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SUMMARY

AND ROLL

AN

A theoretical treatment is presented for determining lift and mcment
on thin arrowhead or pointed-tip wings of which the del= plan form is a
special case with an unswept trailing edge. On the basis of linearized
supersonic potential-flow theory for the symnetric flapping and rolling
modes of harmonic oscillation, expressions have been developed for the
section and total forces and moments to the third power of the reduced
frequency. A limitation to the Mach number range is that the component
of flow normal to all edges Is supersonic or sonic.

●

Ssmple results are given in the form of curves to show that retention
of terms to the third power of the frequency gives good accuracy over a

● range of frequency that covers many practical flutter applications. Plots
are given of the spanwise distribution of section force and mcment for
symmetric flapping and rolling modes. Approximating the section force
and moment by multiplying the section quantities of a rigid translating
wing by the flapping and rolling mode shapes (termed a “finite-wing strip
theory”) is shown to result in an overestimation of forces and moments in
comparison with the results of the present analysis.

A modal type of flutter analysis for an all-movable control surface
wherein all bending and twtsting flexibility.esare effectively concen-
trated in a supporting shaft is made by use of natural (coupled)modes.
A ssmple flutter analysis using two coupled modes is given for a Mach
number of 1.6 for an arrowhead wing with the leading edge swept back
45° and the trailing edge swept forward 150. A near coticidence of the
first two natural frequencies is found to be detrimental as regards
stiffness required to prevent flutter.
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INTRODUCTION
P:

In the continuing problem of analyzing the flutter of wings and
control surfaces on high-speed aircraft, the flutter of all-movable con- K
trol surfaces Is of current concern. Inasmuch as such all-movable mr-
faces are controllable in pitch about an axis, their root support may
not be so rigid as that of a fixed-root airfoil. Consequently, the
natural vibratory modes and the flutter mode may involve appreciable
smounts & symmetric flapping and roll of the elasticalw undefomned
surface about a relatively flexible root support. In order for a flutter
analysis to be carried out, the distribution of air forces on the har-
monically oscillating surface is needed. ._

The treatment of the present analysis is limited to arrowhead plan
forms with supersonic leading and trailing edges. Expressions are pre-
sented for the velocity potential and the distributions of associated
forces and moments. The velocity potential is obtained by expanding the
general velocity potential for “purely supersonic”plan forms, developed
in reference 1, in temns of a frequency parameter, as was done in refer-
ence 2. The expansion is carried to the third power of the frequency,
inasmuch as expansions of this order are considered sufficient for a
large number of practical applications. In reference 2 the arrowhead
plsm form was assumed to be oscillating in,vertical translation and pitch
and, in the present study, the plan form is assumed to be oscillating in
a symmetric flapping mo@ and in roll. The velocity potentials for
flapping and roll are used to obtain force and moment coefficients for

.

streamwise sections of the wing. Total force and moment are also
obtained. v.

Several other investigations have dealt with the forces on a rolling
arrowhead wing with supersonic edges. In reference 3 an expression is
given for the total rolllng-mmuent coefficient for an oscillating delta
wing. This rolling moment Is exact within the frsmework of linearized
supersonic potential-flow theory and is used in the present paper to
illustrate the accuracy of the total rolling moment approximated by the
frequency-expansionmethod for the special case of a delta whg. Refer-
ence 4.includes expressions for the dynsmlc stability derivative for
damping in roll of the arrowhead wing based on retention of only the
first term in the frequency expansion for the velocity potential.

For the purpose of ’illustratinga main use of the section forces and
moments for flapping motions, a coupled-mode type of flutter analysis is
outlined for an all-movable control surface. Each coupled mode is
assumed to contain components of flapping, vertical translation, and
pitching. A numerical example of such a flutter analysis is included.
Other uses for the section forces and moments for the flapping mode and
scuneproperties of section and total force and mcment coefficients are
also considered. .

.



li/iCATN 4189 3

veloclty of sound

functions of x,

generalized mass
and (27))

generalized mass

SYM2QIS

in main stream, ft/sec

?5, and M defined foIlowing equation (4)

parameter, ~/8pb5 (See eqwtions (21)

terms defined by equation (21), slug-ft2

%, BZY coefficients in velocity potential for flapping
wing defined by equations (A4) to (A7)

coefficients in velocity potential for rolling wing defined
by equations (A9) and (AIO)

semichord of wing at root or at midspan, ft

generalized aerodynamic force coefficients defined by
equations (24) and (25)

functions of xl, y, and ~ defined in equations (Bl)

and reference 2

mar flapping tisplacem+?ntof wing semispan about axis
Y = 0, positive for wing tip down

smplitude of flapping displacement f, radians

component of flapping displacement f i.nmode i, radians

time derivatives of f, h, and qJ,respectively

functions of xl, y, and ~ defined by equation (B9)

structural damping coefficients, general and in mode 1



4 NACA TN 418’3

h vertical displacement of wing at x = ~andy=O,
positive downward, ft

ho amplitude of vertical displacement h, ft .

hi component of verticsl displacement h in mode i, ft

Ia~ If section mass mament of inertia in pitch about x = ~

and in flapping about y = 0, respectively, slug-ft2/ft

J- function of x~j y, and ~ defined in equation (B2)

k reduced frequency, lxJJ/V

Li) Mi components of section lift and section pitching-moment
coefficients due to vertical translation and pitching
of rigid wing, defined in reference 5 (i = 1, 2, 3, 4)

+ + ‘L2,f
complex section lift coefficient due to synmetric flapping
oscillation

%,q) + iL2,q) ccmplex section lift coefficient due to rolling oscillation

Eij ~i~ %,fj %,f total coefficients, spanwise integrals of section
coefficients under bar

●

✎✍

m section mass, slugs/ft *.

M Mach number, V/a

%, % section and total pttching moment about ~, positive

leading edge up, ft-lb/ft and ft-lb, respectively

Ml,f + ~,f complex section pitching-moment coefficientabout X. due

to symmetric flapping oscillation

%,(J)+ ~2,cp ccmnplexsection pitching-mbment coefficient about ~ due

to rolling oscillation

‘i,f’J ‘i,~’ parts of Mi,f and ~,q obtained when ~ = O

%,1 + ql,2 total rolling-moment coefficient due to rolling oscillation —

Ap local perturbation pressure difference, positive up, lb/sq ft -
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% P, F

7 ‘af

Qi

section and total lift force, positive down, lb/ft and
lb, respectively

section cross product of inertia referred to x = Xo,

Y= o, slug-ft2/ft

generalized aerodynamic force in mode i.,lb-f%

(x - @ - j+’(y- @

section static mass unbalance about ~ (positive leading

edge up) and about y = O (positive right tip down),
respectively, slug-ft/ft

function of xl, y, and p, defined in equation (B2)

time, sec

characteristic coordinates defined in appendix A

velocity of main stream, ft/sec

downwash at surface of wing; that is, increment of
vertical velocity imparted to air stremn by position
or motion of wing surface} positive when air is
away frcwnthat surface, ft/sec

virtual work, see equation (22), lb-ft

rectangular

rectangular

of chord

Cartesian coordinates,

Cartesian coordinates,

2b;

x-coordinate at
axis

x-coordinate of

y-coordinate at

x=~,y=c
a 2b

ft

nondimensional

deflected

in terms

pitch axis and coincident pitching-mcment

trailing edge “

wing tip, C/(1 -CD)

vertical displacement of wing at point (x,y), positive up,
ft



~_l-Pc
l+pc

angular pitching displacement

leading edge up, radians
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of wing about ~, positive

smplitude of pitching displacement a,

--

half-span integrals of lift and moment
definedby equations (26)

component of pitching displacement a

radians

coefficients,

in

sweep angles of leading edge and trailing
positive for sweepback, deg

rectangular Cartesian coordinates used to
of sources in xy-plane

mode i, radians

edge, respectively,

represent location

generalized coordinate indicating amount of mode i con-
tained in a given displacement

●

amplitude of generalized coordinate $i
r

air density in mmin stream, slugs/cu ft

rolling displacement
wing down, radians

amplitude of rolling

disturbance velocity

of wing about y = 0, positive right

displacement q, radians

potential, ft2/sec

circular frequency of oscillation, radians/see

circular natural frequency of mode i, radians/see

frequency parameter, ~2/p2

a
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< II absolute value of quantity between vertical bars

A bar over a qusntity indicates value

9 the span (except @

ANAIYSIS

of quantity integrated over

Equations for Velocity Potentials

InteRral form.- Ch the basis of a rectangular coordinate system
meting forward with the wing at a constant supersonic speed V in the
negative x’-direction (see fig. 1), the differential ,equationfor the
propagation of small disturbances to be satisfied by the velocity
potential @ is

(1)

The principal boundary conilltionthat the velocity potential must
satisfy is that the fl~ at the wing be tangent to the wing surface.
‘TlxLsboundary condition can be expressed by

F)a
22, =w(x’,Y’,t)

Z’+o

( a= v—
&, + )&% (2)

where ~ is the

the wing (fig. 2)
velocity imparted

vertical displacement from z’ = O of any point of

and w iS the downwash; that is, w is the vertical
to the air stream by the position or motion of the

wing surface, positive when directed away f~om that surface. ~ accord-
ance with linearized theory this boundary condition is evaluatid at the
projection of the wing on the z’ = O plane, and thus no effect of
wing thickness is taken into account.

The solution for @ that satisfies the present boundary-value
problem (wing with all supersonic edges) is similar to the solution
developed in reference 1 for an infinite swept wing. The problem is
satisfied by a distribution of sources on the upper (z . +0) wing sur-

face and, in the absence of thiclmess, the same distribution but with

—
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opposite sign on the lower (z = -O) surface. At this point in the
development of # and for the rest of this enalysis, it is convenient
to use the coordinates x,y as nondimensional quantities, obtained by
dividing x’,y’ by the root chord 2b. Then, in a form slightly dif-
ferent from that appearing in equation (9) of reference 2, # can be
expressed as

@(x,Y,+o,t) =

where
-2

z=—
(
with

B2

B

)k=$ R= (x - ~)2 - @2(y - 7)2, and f

and q, which denote the location of sources, are nondimensional vari-
ables of integration in the x and y directions, respectively. The
region of integration S is, for example, the shaded area in figure 3(a)
prescribed by the forward facing Mach cone with apex at the point
(X,y,+o). The local downwash w is positive when the ~r is diverted
outward from the surface by the inclination or motion of the wing.

If the method employed in reference 2 is followed, the integrand of
equation (3) is expanded in a Maclaurin’s series with respect to ~.
When the series is limited to the third power of 65 and the terms are
collected with respect to ~, the result is

.

where

a. =1-izk &2 :3-Fx+i —x

al . 632im+#x-i—x
2

$ Z#a2=-=+i—x
2

s
a3=-~7

(4)

.

.
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A difference in the present notation from that of reference 2 is that
herein ~, q, and ZE and consequently R, ~, and bn are used In

nondimensional form.

Reference 2 treated the vertical translation and pitching modes of
oscillation. The present paper treats the symmetric flapping and rolling
modes illustrated in figure 3, and the integrated expressions for # for
these modes are given in the following sections.

Integrated form for symmetric flapping and roll.-

and the resulting downwash w on the upper surface in

For @,
.

%= -2bfIy

w= -2b;Iyl
I

%1= -2kXpy

w = -2* }

Enluation of the integrals indicated in equation

The displacement ~
equation (2) are:

(5a)

(5b)

(4), after sub-
stitution of the appropriate downwash, results in the foll&ing forms
for the velocity potential on the upper surface:

@+
[ r

= #(2b)2 Af~~ + %* tanh-i = +
x+ plyl

Blf COS-lx+ p%y + B= ~os-lx - p%y
p(cx+ y) 1m=iT (6a)
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32b)2~F=4.$=:
-lx- 2(3

B,r COS

p ‘1
P(CX - y)

where, with reference to the shaded

- BH Cb~-1 x +“p,cy
g$(cx+ y) +

(6b)

regions of integration of figure 3,

A

h

the terms involving the coefficients ~ and ~ ~ontain contr~butions

from regions 1, 11, and III, and the tenus with the coefficients ~*,

Blf, and Bw are contributed solely from regions 1, 11, and 111,

respectively. The coefficients ~, %*, ~,- ~, and Bti are given

in appendix A. Appendix A also indicates how the integrations of equa-
tion (4) were carried out, as in reference 2,’~y the convenient use of
the characteristic coordinate system shown in figure 3(b). The tanh-l
function with its coefficient M* arises as a result of the disconti-

nuity of spanwise slope at y = O in the symmetric flapping mode.

For the limiting condition of sonic leading edges with PC = 1
(that is, with the Mach lines from the leadlng apex coincident with the
leading edges and
ure 3), equations

the entire plan form contained in region I of fig-
(6) reduce to the forms

.

The coefficients

are also given in

(7b)

.

Alf and Alp and the development of equations (7)
appendix A.

Concerning the development of velocity potentials, it is to be
noted that thus far the only restriction with regard to the trailing
edge is that the component of flow nor@ (in the xy-plane) to all
points of the trailing edge is supersonic ‘orat least sonic. Thus,
the trailing edge can be jagged or curved - or need not even be sym-
metric about the midspan.

.

.
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6 Section Forces and Moments

The foregoing expressions for velocity potential are now used to
. obtain the forces and moments on any wing section y, as in figure 1,

and the observation is made that only those restrictions on the
trailing edge discussed in the preceding paragraph for the velocity
potential apply also to the section forces and moments.

The difference ketween local pressures on the upper and lower
surfaces of the wing is

.

‘p= -2”(%+Ma
where o is the density of the main stream and d is the veloclt~
potential for the upper
the signs used, 4 is

The expression for
figure 1 is obtained by

where xl(y) is the x

(8)

surface, given in equations (6) or (7). With
positive upward.

the force, positive downward, on section y of
integrating as

J’
xl

P = -’b
y/c

coordinate of
pitching moment (positive leading edge

follows: -

Apdx (9)

the trailing edge. The section
up) about an axis at x = @ is

-*)4 U (lo)

Substitution of equation (8) into equations (9) and (10) yields

(11)

{1 J

xl
& = &pbV X@ -

r}
‘1@dx+2ik lx@dx-~bP (12)

y/c y/c y/c
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Upon substitution of # from equattons (6) or (7) into equa-
tions (11) and (12); the section Hft and pttching moment can be
written as

P=
[(-4pbV2k2e~t fO Ll f

> + %,f) + %(%l,cp + iL2,qI (13)

%= -l+pb2V2k%i~ f M[o(l,f+~2,f) +$?opl,q+%,ql] (14)

In the past, some writers (for example, ref. 2) have used the nota-
tions ~, L2, Ml, and M2 as flutter coefficients associated with

bending or vertical translation of wings. fismuch as each section of
the wing translates vertically in the two modes of oscillation treated
in the present paper, the additional subscripts f and q are used in
equations (13) and (14) for the purpose of differentiatingthese new
coefficients from those for a two-dimensionalwing or a wing translating
vertically a~ a rigid unit.

The section contribution to the bending moment about the wing root
as a result of symmetric flapping (positive In the wing-tip-down direction)
is

2bly\P = -4pb2V2k2ei@fo(21yl~,f + i2~ylL2,f) (15)

and the section contribution to the rolling moment due to roll (positive
right wing down) is

2byP =
(

-4pb2V2k2eitiq02y~,Q + @2,q) (16)

The section force and moment coefficients Li,f and ~,f of equa-

tions (13) to (16) are given in appendix B.

Total Forces and Mcnnents

The total aerodynamic forces and moments needed for a flutter
analysis or for any other use can be obtained by integrating the section
quantities over the span. At this point in the present analysis further
treatment is restricted to plan forms wit$a symmetric trailing edge snd
particularly to a swept trailing edge which meets the leading edge at a .
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pointed tip as illustrated in figure 1. The angle of sweep of the
trailing edge is ~ (sweepback is positive), and at the positive

wing tip the coordinate y = yt =
-’where ‘=wn~”

13

Integrating

F= J’ 2bP dy
Span

equations (13) and (14) across the span yields

r
=2 t

( ) (17)2bP dy = -8pb2V2k2eitif0~)f + i~2,f
o

J J’Yt%= 2~dy.2 2~dy=
4 )()-8pb%2k2eiatf fil,f+ ~2,f 18

Span o

where the contributions due to roll are zero by virtue of their anti.-
symetry. The total.root bending mcmnent,obtained by integrating equa-
tion (Is) over the positive halt’-span,is

J’ J(Y%
‘t 4b21ylP dy= -8pb%2eimtf0 o

)= %,f + iL2,f @ (19)
o

.

and the total rolling moment, the full-span integral of equation (16), is

J’‘t 4b2~p (& = -8Pb%2k2eiatqo 2
S(

Y*
2 0 2Y ~,q -I-iL2,q)dY

o

= 4-8pb%2k2eimtcp ~q,l + ~ )dy
cp,2

Bars over the coefficients in equations (17), (18), and (20) denote
total coefficients; for example

(20)

Expressions for total force and moment coefficients are given in
appendix B.
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Analysis of Flutter Involving Flapping and

On the basis of the simplify@g assumption that
concentrated in the supporting structure at the root,

Pitching

all flexibility is
a method is out-

lined in this section for analyzing the flutter of an all-movable con-
trol surface. Zhe support flexibility allows the control surface to
pitch, to flap, and to translate vertically: Coupled modes are used
because experience has shown that the natural vibration modes of the
control surface are often strongly coupled, and the necessity for
obtaining frequencies of hypothetical uncoupled modes is thereby
eliminated.

The present analysis IS adapted from that of reference 6 and only
the essential points are given herein. The use of two coupled modes is
illustrated, but any number can be employed. For two modes

h(t) = hl~l(t) +h2~2(t)

u(t) = el~l(t) + e2~2(t)

f(t) = flEl(t) + f2E2(t)

where h, a, and f are the displacements in vertical
pitching, and flapping, respectively; ~, ei, and fi

.
translation,
are the components

of the three types of motion in mode i and are not functions of the

spanwise coordinate in the present usage; ~i(t) = ~ieiwt is the gener-
—

alized coordinate in mode

is complex to account for

Ai =

The generalized mass

where

jrTip fii2 + ~ei2 +
o

i and & is its smplitude, which in general —

phase differences of the modes.

of the semispen for mode

(
Iffi2 + 2 Sahiei + ‘f%fi

m wing mass per unit span

i is

]
+ P@Oifi dy’

Ia pitching mass moment of inertia about x = ~

If flapping mass moment of inertia about y = O

—

(a)

—.

per unit span

per unit span .

.
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* Sa static mass unbalance about x . W per unit span

Sf static mass unbalance abdut y = O per unit span

7

‘af mass product of inertia about x = Xo, y = O per unit span

The virtual work done on the semispan control surface u it moves
through the (real) virtual displacements %1 and ~2 is

+~el+PfllY’l)dY’ +

+ Mae2 + Pf2]Y’1)m’

(22)

where

P=
[b ( 2)+ aO(% + @ + ‘O@’l,f + ‘2,f

-4pbV2k2etit~ ~ + fi
j

1
‘~= ~@2’2k2ewt~@. + % + %(%+ ~4) + fopl,f + %f)] ‘2’)

Qi=&

megeneralized forces Qi, aftir expansion and collection of te~, can
be represented as

Q1 =

Q2 =

8Pb%2eimt (. %1 + i2%2 )

8Pb5u2ei~t
(3JC21 + .WJ22)}

(24)
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in which, by matrix notation,

[
()h22f 2% h2e2 f@2 h2f2 f22
%- b b b

NACATN 4189

)

‘1
r2

r3

r4

r5 +

r6

‘7

r8

r9
*

The minus signs appear with the generalized aerodynamic-forcecoeffi-
cients ~ so that their sign in the flutter determinant to follow
coincides with that of reference 6. As used herein the elements Cmn
are in a nondhnensional form, however, and differ in that respect
from

rl .

‘3 =

‘5 =

‘7 =

‘9 =

reference 6.

The integrals
‘i ‘e

~(.,+ +-Y

J(‘t LI,f + iL2,f)0

;( )
‘Ml+ iM2dy

o

/(Yt

k,f+ ~2,fjdy
o

(25)

>

r,=~2W+ ‘L,)*

r4=&d(L3+ ‘Li~

‘6=~21y!(Ll,f + ‘%f)dy ‘(26)



3N

.

.

mm m 4189

cwhere yt = ~.
-CD

Mi (i = 1, 2, 3, 4)

Expressions for the section coefficients Li and

are given in reference 2 and their spanwise

integrals ~ and fii,in reference 5. It is to be noted that the

integrals I’i are, for convenience, evaluated over the half-span;

whereas the barred quantities r~ and ~i represent the full-span

integrals. Accordingly, one-half of the latter quantities are to be
used. The integrals 1’5 and rg equal one-half the full-span or
total coefficients appearing in equations (17) and (18), respectively.
The integral r6 appears on the right side of equation (19) and its

integrand is given by equation (BIO) of appendix B. The integrands of
r2 and rk are obtained by following a procedure psrallel to that

described for obtaining the integrand of r6 beginning with

equation (B8).

Finally, with the intermediate steps of reference 6 omitted, the
equations representing the @mmic equilibrium of flutter are

where

4ai. —

8pb5

In equation (~) al and Cm are nondbnensional for convenience and

only in this matter of form and the number of modes treated does equa-
tion (27) differ from equation (12.30) of reference 6.

The nontrivial flutter solution is obtainedby requiring the
determinant of the matrix of coefficients of & to vanish as follows

+(3%++ “~ C12

Cal %~ -(:/y@+ i.2jl + %22
‘0 ’28)

A ssmple flutter solution is carried out in appendix C.
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DISCUSSION

Some Characteristics of’Forces and Moments

Spanwise distribution of forces and moments.- The distribution over
the span of the various components of lift and moment is exsmined as a
matte; of interest. As an&ample the coefficients of equations (13),
(14)~ and (15) have been calcul-atedoytw:gum~=o~ gYMifllS~~dS for
a 45 delta plan form (C = 1, D = . . >
k = 0.5. These results are plotted as functions of the spanwise coordi-
nate in figure 4. For the symmetric flapping mode the section lift and
pitching moment are shown in figures h(a) and k(b), respectively. For a
rolling oscillation the section lift is shawn in figure 4(c). In each
of these figures the solid-line curves result from the inclusion of all
terms to the third power of the reduced frequency k, and the short-dash
curves result from the inclusion of terms to the first power of k. As
can be noted from the proximity of the solid-line and short-dash curves,
the addition of the second term with the next higher power of k to the
first term in each coefficient has a moderate rather than a large effect
everywhere on the span for this sample set of parameters, even for the
rather high value of k = 0.5.

In flutter analysis a fairly common practice, when the exact span-
wise distributions of force and moment are not known, is to use the
spanwise distributions for rigid-wing motions multiplied by the mode
shape (a procedure referred to as strip theory). This method was used,
for example, In reference 9.in analyzing the flutter of cantileverwings
of rectsmgular plan form. Therefore, as an interesting comparison, the
results of a “finite-wing strip theory” are also shown in figure 4.
These curves were obtained by multiplying the section coefficients (to
the third power of k) for a rigid, vertically translatingwing (with
the same plan form and stream flow parsmeters) by the appropriate
deflection mode shape,

I
2 yl for symmetric flapping and ~ for

rolling. The factor of 2 appears with the strip-theoryresults because
the unit of vertical translation is the root semichord b, whereas the
flapping and rolling deflections are referred indirectly to the full
chord 2b. The strip-theory forces and moments are moderately to
appreciably different from the results of the present method, particu-
larly in the case of the in-phase components ~,f, Ml,f, and ~,~.

This difference is a direct measure of the effect of aerodynamic induction
associated with the flapping and rolling mode shapes treated in the pres-
ent paper.

Accuracy as function of reduced frequency.- The coefficients
present analysis have been obtained from a power-series expansion

of the
in

.

.

.

.
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. terms of the reduced frequency k.
racy as k increases from zero is

19

An evaluation of the loss of accu-
necessary

the-use of the coefficients and to-determine
. beyond which the present coefficients,which

should not be used.

As an exsmple, for a Mach number of 1.6

total lift coefficients ~1 s and ‘h s of

to establish confidence in
an upper boundary of k
extend to the third power,

and with ~ = 0.5, the

equation (B27)j the pitching-
~>~

moment coefficients Rlaf and ~2af ‘~~ equation (E@), and the rolling-

moment coefficients ~;l ~d ~;2 of equation (B29) have been evalu-

ated and the expressions for delta wings with supersonic and sonic edges
sxe as follows:

El,f
—=0.171077 - 0. 134852k2
~2

%,f _
o.533761~ - o.168442k

~2

—
%,f
—= 0.MP646 - 0.096323k2
~2

~2,f—=
.2

o.26688~ - o;112297k

i- 0.0568936k4 - 0.015fi79k6

+ 0.0953k73k3 - o.0312k7@

+ 0.0kk250k4 - 0.0127538k6

+ 0.071511k3 - 0.024W77k5

T@
—= 0.136862 - 0.0770583k2 + o.032860k4 - 0.0056683kk(
C3

E@.
O.53376* - o.H2297k+ o.0476736k3 - o.o124g88k7

C3

(29)

As
of
by

explained in appendix B the total coefficients for the special case
th= delta plan form are obtained to the seventh power of the frequency
application of the reverse-flow theorem.

The coefficients of equation (29) are plotted in figure ~ in such a
way as to indicate the use of only the first term (the horizontal line
in’each case), then the successive addition of the second, third, and
fourth terms in each coefficient in order to demonstrate the corre-
sponding progressive improvement in accuracy of these series for higher
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frequencies. The highest power of k contained in each calculation is
indicated near the right end of the curve. For the rolling-moment coef-
ficients of figure 5(c), the exact (not frequency expanded) result of
Miles (ref. 3) for delta wings Is also shown and the convergence of the
series result is evident. (The exact result was obtained by using in
equation (70b) of
in reference 7.)
reference 3 is

where Cg is the
P

respect to rolling
tive Cl of, for

of i$2p with the

reference-3 the aerodynamic functions f~- tab&ted
The relation between the present notation and that of

2,2 _ik(%l +%,2)
P C3

(30)

derivative of rolling-moment coefficient with

velocity (dynsmic-stabilitynotation]. The deriva-
exsmple, reference 4 corresponds to the first term

relation

-~ .[1 - CD)3
2CZP =

y,c. (31)
C3 -

If an inaccuracy of 10 percent can be tolerated, the first two
terms of equations (29) are acceptable over a range of Z frcm O to 2.2
for the coefficients of figures 5(a) and 5(b), and frcm O to about 2.7

*

for the coefficients of figure 5(c). Over these ranges of ?5 the curves

utilizing as the highest power k7 and k8 are essentially exact, and
in figure 5(c) the exact result itself from reference 3 is available for

.

comparison.

The accuracy of the curves of figure 5 extends to higher values of
U than was noted in reference 5 for delta wings oscillating in vertical
translation and pitch, and also in reference 8 for two-dimensionalwings.
The reason for the improved accuracy appears to be that, since the local
emplitude of the oscillation modes treated herein (symnetri.cflapping and

.

rolling) is zero at the wing center section and increases progressively
toward the wing tips, the wing section that might be termed the “repre-
sentative section” is located farther outboard where the local reduced
frequency is smaller than the basic or reference k, which is defined in
terms of the root chord, k = ub/V.

The accuracy shown by figure ~ applies specifically to delta wings.
Some information concerning the accuracy for the general arrowhead plan
form is shown by table III of reference 5 and the associated discussion,
where sweepforward
shown to result in

of the trailing edge (decreaseIn aspect ratto) is
improved accuracy, and conversely, sweepback of the . --
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trailing edge (increase in aspect rati_o).
for the total coefficients ~ and ~

modes of oscillation. In fact when ~
. the accuracy approximately doubled. For

21

results in decreased accuracy
for translation and pitching

was decreased frcm 10o to -200,

the modes of oscillation treated
in the present paper no reason for expecting a different trend of accu-
racy as a function of the trailing-edge sweep angle is apparent.

Results of a Sample Flutter Calculation

In the analysis a method is outlined for analyzing the flutter of
an all-movable control surface with the flexibility concentrated in the
root support so that the motions of the surface are made up of flapping,
pitching, and vertical translation. A nwnerical example of a flutter
analysis for the configuration shown in figure 6 is carried out in
appendix C, where the pertinent parameters and mode shapes are given.
The results are plotted in figure 7 as functions of the ratio ~/~.

Figures 7(a) and 7(b) give the flutter boundaries in terms of the stiff-
ness parameters ~/V and ~/VJ respectively, and figure 7(c) gives

the frequency ratios &/~ and m/~. In figures 7(a) and 7(b) a rather

sharp peak of required stiffness appears near a frequency ratio of unity
when the structural-dampingcoefficient g is zero, as shown by the
solid-line curve. ‘Ihe”peakis greatly reduced if g is increased to

. only 0.03 (shown by the dashed line) and a further reduction is to be
expected for higher values of g, but even large amounts of damping have
relatively little effect on the required stiffness for frequency ratios

. less than about 0.6 or 0.7. In actual structures, damping greater than
the equivalent of g = 0.01 or 0.02 may be obtainable only by the addi-
tion of damping devices. Figure 7(c) shows the frequency ratios u/~

/ / . -ainthes o~d-linec~veisforand u ~ as functions of q w

g = O and the dashed-line curve for g = 0.03. For values of ~/~

less than 1.0 the flutter frequency m falls between ~ and ~. As

~l%? increases toward a value of 1.0, u is seen to approach both ~

and ~; and as a value of 1.0 is surpassed, m drops below both ~ and

%“ Structural dsmping has an almost negligible effect on the frequency.

In the final section of appendix C the effect of using strip theory
(multiplyingthe spanwise distribution of force snd moment for a rigid
translating wing by the flapping mode shape) to obtain lift and moment
distribution for only flapping motion Is exanined. The resulting flutter
boundaries are very close to those of figure 7 and have, therefore, not
been added to the figure. Thus, even though there are appreciable dif-
ferences between the spanwise Mstributions of force and moment due to

. flapping motion as obtained by the two methods, virtually no difference
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in the resulting boundaries was found for the particular parameters and
modes of the present example. No generalizationfrom these results is
believed justified, however, regarding the use of strip theory.

In assesstng the relative generality of the results of figure 7, a
fact to be kept in mind is that each of the two coupled modes of the
control suxface is held constant on the figure. For an actual structure,
if the frequency ratio of the first two modes were changed by altering
the flapping or pitching stiffness, or both, the coupled mode shapes them-
selves would probably change and calculation of a new flutter boundary
would be necessary.

CONCLUDING REMARKS

On the basis of linearized supersonic potential-flow theory, expres-
sions have been developed for the velocity potential and for the section
and total forces and moments on thin wings of arrowhead plan form with
all sonic or supersonic edges oscillating harmonically in symmetric
flapping and in roll. These force and moment expressionswere derived
by using the velocity potential expanded as a power series in terms of
the frequency of oscillation and retaining terms to the third power of
the frequency. The resulting total forces and moments are shown to be
accurate over a range of frequencies wide enough to make them useful for
many practical flutter applications. Multiplication of the section
forces and moments of a rigid translati~ -wingby the flapping and
rolling mode shapes (called a “finite-wing strip theory”) results in an
overestimationof forces and moments in comparisonwith the results of
the present analysis, which includes spanwi.seinduced effects of varia-
tion of section amplitudes. Use of the forces estimated by strip theory
for the flapping motion in a single sample flutter solution, however,
gave flutter boundaries virtually the same as the boundaries obtained
with the forces given In the present analysis; however, no generaliza-
tion is believed justified regarding the use of strip theory.

A method of flutter analysis using natural (cowpled)vibration
modes has been specifically adapted to an all-movable control surface
configurationwherein all bending and twisting flexibility is concen-
trated in the supporting shsft. With this method an example flutter
analysis using two natural modes of vibration is carried out. A near
equality of the first two natural frequencieswas found to be very
undesirable as regards the stiffness required to prevent flutter.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., October 8, 1957.

*
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mm= A

DEVFUIFIKENTOF VELOCITY POTENTIAL

The characteristic coordinates used in reference 2 are also used
in the present analysis, but in a nondimensional rather than a dimen-
sional sense. (See fig. 3(b).) Thus, equation (4) can be written

ljks~~ 1ti(u,v,t)bm(u+ V)m (~ - U)(VO - V) dudv (Al)

where

%+ PY)vo.—
29

and @ is the downwash
As can be seen
tion (Al) are

frcznthis
in transformed coordinates shown in ftgure
figure, the limits of integration in equa-

1 0 % 0 ‘o

11 ~
Y % % 0

III w 0 0 Vo

3(b).

(A2)
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where
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17. - $C
l+j3c

Symmetric Flapping Wing

For the symmetric flapping mode of oscillation, the downwash
@(u,v, t) in equation (Al) is

ti(u,v,t) = *;IV - u! (A3)

Upon substitution of equation (A3) into equation (Al.),performance
of the indicated integrations,and conversion to xy-coordinates,the
result can be put in the form given by equation (6a). The coefficients
of this equation can be expressed as follows:

(Af = a~fx + i2k a2fx2 + a,fya) + 4k’(a4fx3 +

)
a5@#

(
+ i8k3 a6fX4 + ~fx~ + a8fy4)

Af* = elf# + 4k2~My4

Blf(x,y) = P&x+ Y)2+ l%fPyY(cx+Y) +

[ 1
3+ P4f#CY(cx+ Y)’i= P3f(cx+Y)

[
4 + ~6fP2CY(CX + Y)4k2 D5f(Cx+ y) ~

-i-

+1
[““““ 1

i8k3 ~7f(Cxi- y)5-+ P8fj~y(Cx+ Y)4

(A4) -

.

(A5)

(A6)

B2f(x)Y) = Blf(x,-y) I
J

.

.
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[ 1
-M%2 M2(602 + 22a + 15) + 2a2 + 3aa4f = —
24p4a3

yf ‘ [8-#c@M2(
1+ 35a + 45) + 3a2 + 9a

24f12a3

%f ‘
M4C2

[ 1M2(24a3 + 156a2 + 235a + 105) + 24a3 + 75a2 + 45ff
360@
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M2

M2
[( 1M24a+5)+u

16p2u3fi

*2

[ 1M2(2a +“3) + o
12f34cc2fi

44
[( 1
M22u+5)+3U

48p4u3fi

At the limiting condition of the sonic leading edge, regions II and
111 of figure 3 no longer exist and
be csmxl.edout only over region 1.

the integration of equation (Al) need
Thus, the coefficient Alf of equa-

tion (7a) is found to be

Alf = T@ + i2k2(T2fX2 + T3f#) + 4k2(r4fx3+ r5#’) +

i8k3(T6fX4+ T7fX~2 i-T8f#) (A7)

.

.

*

where

.

.
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.

.

1
‘lf=—

3$2

Ta
_ .=2

15p4

.~2
T3f = —

15p2

-M2 (1X2+ 7)‘4f ‘—
420D6

T5f = L(l@ - ~)
840D4

76f
M4

= —(X2 + 9)
945P8

4!46
‘7f = —

315#

‘8f . L(8M2 - 9)

945$4

Wing Oscillating in Roll

For the wing oscillating in roll, the integrations of equation (Al)
are carried out by using the following downwash in transformed coordi-
nates (fig. 3(b)) frcm equation (5b):

@(u,v,t) =*@(v - u) (A8)

Upon conversion to xy-coordinates, the coefficient ~ of equation (6b)
can be written
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where
.

[ 1
. M~3 M2(28a + 45) + 9~

am 24p2a3

ah [ 1
= ~ h12(14a+ 15) + 202 + 3a
24p2a3

[ 1. d M2(11302+56a + 42) + 15$ + 18a
~~ 3@404

—

[ J-M4C3 M2(22a + 42) + 3tJ2+ 18a
%==

,

For the condition of the sonic leading edge, the coefficient %9
of equation (7b) can be expressed as

where

‘% = ~(5M2 + 7)

-~4 (M2 + 9)%==

. 4.M2

‘a 15p3

‘%’
. @_(4M2 - 7)
315P3

m4 (4M2
‘%=— - 9)

945P5
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APPENDIX B

FORCE AND MC@NT COEFFICIENTS

Section Coefficients

symmetric flapping wi~ .- The coefficients ~,f and ~,f of

equations (13) and (14) are obtained by substituting equations (6a) or
(7a), respectively, according to whether the leading edge is supersonic
or sonic, into equations (11) and (12). The general
lized in reference 2 are as follows:

definitions uti-

~= “n+-f$==
Fme =

[

2*~n (p%y)exl~(cxl + y)~cos-1 xl + P*Y
B(cxl + y) +

(-p%y)exlm(cxl - y)ncos-1 ;C;$)

1.

. .=-+-&n@w.

%mle =
P*msn+l

[J

(pay)e ‘1 2P(CX + y)ncos-lx+#cY ~+

y~c ~

J(-fky)e ‘1 +(CX - y)cos-1 x -
1

P+Y &

y/c p(cx - y)

The following general definiti.onsare also introduced:

(Bl)

(B2)
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With the general expressions of equations (Bl) and (B2) the coefficients ●

%,f and %.jf (f = 1,2) of equations (13) and (14) for the condition

of the supersonic leading edge can b written as follows: .
\

Ll,f
[

0 + J32fI& +
‘ &~lfGOl + %fE02 + ~3@20 + ‘1#20 + &%2

(~3fFo30 + B4#021 + k2 ~4fG03 + ~fG21 + %f%4 + w#22 +

a8@40 + ~#40 + B5fHo4° + ~6f%31 + ~7fF05 ]0 + ~8#041

(B3)

[(
L2,f =,~~ u@Ol - eMJ20 - ~@020 - P2fFoll) + k(%f~02+

—

a3fG20 - a4fEo3 - 7fE21 - &2fJ4(-J+ 133fH# + Pl+fH@l -

~7fF&” - ~6fF031]
)

Ml,f’= &
{

(a@02 + % ’03 - d + u3f@l - ’20)+ ‘lfszl +
1

Fk2 4fG~

(
a8f E41 -

E@@+ P3@3°- %33°) + ~4f(%21

+ c@%2 + c%f(% - %+) + yf(E23 -

)’40 + ‘2f’41 + ~5f%4° + ~6fH131 +

%4]}%f(%o-~o)+~8f(F~41 - 1

-%21) +

G22) +

M2,f’=&{*~lf(Gol -.02)+ %(’2O - .2;)+ Blf(Ho20 -%29 +
-,

][P2f(%11 - %11 (+ k ~G03 + a3fG21 + ~4f G03 - EM) +

(a5f G21 - E22) + ‘=F40 - ’41) + ‘3fH130 + ‘@12’ + I

~5f(%4° 1}- F.4°) + ~6f(%31 - F,~l J
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where Mi,f’* and Mi,f are related by the expression

31

.
%,f + %,f =Ml,f ’ + ~2,f ’ -

me coefficients ~f, Pif, ~d eif

following.equation (A6).

~o(%,f + iL2,f)
(B5)

are defined in appendix A

For the condition of the sonic leading edge the coefficients Lijf

and ~,f’ reduce to

%,f =

L2,f =

1

T6fE@ + ~7#22 + ‘8fE40 + ~2fIS40)1 I

[(~*-wol - ‘lfJ20) +&p%2+’3fG20 -’4fEo3 -

“5fEa - %J40]

[
k2 T4fG~ + T5#22 +

- d + ‘3f&l - G20) + ‘W% +

(‘6f ’05 - %4) + qf(E23 )
- G22 +

I

(‘8f ’41 ) d}
- G40 + EaS4

M2,f1 =
{[(

i

(B7)
~ *TE Gol

1[- ’02) + ‘~&o -‘~ + k ‘2fGo3 +

(T3fG~ + T4f G03 - %4) + T5f@21 )
-Ez +

(
c= S40 - J41]}

Equations (E6) and (B7) are obtainable from equations (B3) and (~) by
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substituting Tif for ~f and dropping all

multiplier ~if. The coefficients eif and

equations (A6) and (A7), respectively.

NACA TN 4189

terms involving the .

~if are defined following

.

The main text of this paper includes a procedure for analyzing the
flutter of wings or control surfaces of arrowhead plan form when the
flutter involves vertical translation,pitching, and symmetric flapping.
Equations (26) show that not only are section lift and pitching moment
required, but also the product of the absolute value of the span coordi-
nate and the section lift. This latter quantity for synmetrlc flapping
is

qY’ \ = 2bPlyl = -4Pb2V2k2ei&’f~(2[ylLl,f + ’21yl%?,f) (B8)

The quantities 21yl~ f and 21y~L2,f are obtained by multiplying

both sides of equatio~ (B3) and (B6) by 2yl.
1

A comparison of the
resulting equation with equations (Bl) and B2) shows that, on the
right-hand side of equations (B3) and (B6), the index m is replaced
by m + 1 in the quantities ~, ~, Jm, and ~, whereas Fme

is replaced by F&
I

‘1 ~%, and he by &-l/#C. To be precise,

this substitution give> the desired quantities on-the right (y positive)
half-span, but since the lift P and the product P\Yl are symmetric
about ‘y ~ O they become known also on t~ left hal$~~pan. T& general “

definitions of %*1 and ~e+~ are as follows:

&=+l= 2#CyFme

[

-1 xl + p%
= ze+l+~n (&’c7)e+%1m(cxl + Y)nCOS

p (cx~ + y) -

(-&Cy) e-t-lm Cx -1 xl - #Cy
xl ( 1 - Y)ncos 1P(cxl -Y)J

L-l =
2#Cyl$#

=

[f
*I

2e+2+m+n (p%y)~l ‘1 P(cx + Y)ncos-1-x + ‘y W -
y/c

.

(9)

(-p%y)e+lr1X%(cx - Y)ncos-1 x - 1P*Y &

y~c p(cx - y)
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. The general definitions of equations (B9) (with the distinguishing bsr
under F and H) are thus seen to differ basically frcanthose of equa-
tions (Bl) only in that the second term within each square bracket is

. preceded by a minus rather than by a plus sign. Thus, on the right half-

ipan, for the supersonic-leading-edgecondition,

/

2y~,f=g
{
%% + %3%2 + yfE30 + ~lfs30 + ($~Bl+l+

@

+ ‘4f%22 )[
+ k2 m4fG13 + a5fG31+

a6fE14+w@32+a8#50+ %fsx+ #p5f%41+

+ ~8f%42)]}

{[ ($ )]2 y ~,f = * * qfEll - qfJ30+ + -P +21 - P2&2 +
DC

4%%2 + ~sfGx - “4f%3 -9$31- %fJ50 +

‘4f%122 - ~5f%41 -
2

‘6i%3 j}

(B1O)

For the condition of the sonic leading edge the quantities 2[Y [Li,f

are obtained from equations (B1O) by dropping all the terms tbt ficlude
a multiplier Pif and replacing aif by 7if. The terms that include

a multiplier eif remain unchanged.

When the section coefficients are calculated, the chordwise inte-

grals Gm, ~e, I&*l, and ~ are needed. Most of the required

integrals are given in appendix B of reference 2 or can be directly
deduced from the spanwise integrals of equations (A23) and (A24) of ref-
erence 5. A few printing errors in reference 2 are noted in reference 5,
and an errata has corrected equation (A23) of reference 5 as follows:

.

.
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(Bll)

Certain additional chordwise integrals needed for the flapping wing
are as follows:

1
64(15a2+ 70a + 63)y6cosh-1 ~

“

.

[
W ~C%23 + C2(57’a+ 113)E41 + ~H14°’= 4F~o+*F150-—

30C2 120C2

1
64(57a2+ 170a +105)y6cosh-1 ~

[ 1
~2fi C2E21 + 16(a + 3)y4cosh ~

%21 = * F031 - 3
-1 xl

[
@ 2C%23 + X2(a + 9)E41 +H~l = ~Fo51 - E.

1
64(3a2+ 30a+ 35)y6cosh-1~

1
4[ 1
B2 a C2~2+ (2a+ 3)E40

H121 = &F~l - — F032 -
3$2C3

1~Fo51 -—
[

~2fi %4E23 + 3C2(U + 4)E41 +H131 = F@2 - 20C
5C2 4p2c3

1
64(3a2 + 156 + 10)y6cosh-1 ~

,

The chordwise inte~sls &*l contained in equations (B1O) are

defined by equations (W) and thus can be directly deduced from he.
–1

For exsmple, equation (A24t) of reference 5 gives %3 , from which the

(B12)

.

.

●

“
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chordwise integral ~3 1 is obtained by merely removing the bars over

2 is deduced to bethe E’s and the F. Then ~5

[

B4C26 #E52 + (m + II) E50
%32 1F2-‘~-ok T 1

Shilarly, from equation

=&F 1-
%331 4C a

(A24c) of reference 5 1 is deduced
%3

[ 1
4B2@~E31 + 2(3a+ 5)y5cosh-1~

(B13)

to be

(B14)

Consequently, a list of all the expressions for

equations (B1O) is not needed herein.
%m”’appearing in

ad (B1O) are represented

%lo ’$%ll-

%1=*(%-

%2’@l 13-

%3’$%14-

%0 =J~-~

k
=&J2m2-

The remaining chordwise integrals needed in equations (B3), (Bk),
generically as follows:

(B15)

Other general expressions that can be useful for calculations are
the reduction formulas
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~2c@m,n+10 )
- CFBl, nO

~Q(%,n+l” -CF
)
o

*ljn

(
P4C2 Fm,n+20 - 2cF~l,n+l 0 + C2FW2, n0

)

(
~4c2 ~ ~20 - 2C~1,n+10+ C2~2 ~0

> > )

NACA TN 4189

.

.

(B16)

Rolling wing.- ‘Thecoefficients Li,q and ~,q of eq~tions (13)

and (14) are obtained by substituting equations (6b) or (~), according
to whether the leading edge is supersonic or sonic, into equations (11)
and (12). With the use of the general definitions of equations (Bl) and
(B9) the coefficients may be written, for the condition-of the supersonic
leading edges, as follows:

\

%,Q = &
[

~ U19%0 + a2qE11 - ~~p+a” - 132#!!!11- P3#430 - ~4.#.421+

(
*‘2u3&12+ %qG30+ ~13+%#31 - ~5f~0 - ~6f~31 -

%f%l?” - ‘8f%41 ] > (B17) -

[( )(%,q = * * %p%o + %!.%12° + f%fli + k “4%1 - %% -

“4&30 - B3#+30 - P4f!i!i21 + ‘5f%4 ]0 + ~&#
/

Ml,q’= ~

{
A %@% + %2Q(%2 - %1) - Pla” - %f%ll -

(~3f %3
o

)[
- ~j) - B4f@1; - ~; + k2 UXG13 +

“4qG31 + ~~14 - %3) + “~ @32 - ’31) - ~5f~4° -

~6&31 - P7f(@ - %0) - ‘8f@ - 1Q]}
1, ,

(Eq. (B18) concluded on next page)

.

(B18)
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(u8)

‘6&1 - H031j

where ~,q’ and Mi,Q are related by the expression

Mljq + ~,,ql =%,ql’ + M,,(p’ - ~o(%,ql + %) (B19)

For the condition of the sonic leading edge the coefficients Li,ql
and ~,q’ are obtainable from equations (B17) and (B18) by substituting

-rif for ~f and dropping all terms involving a multiplier Pif.

In the section contribution to the rolling moment of equation (16)
the quantities 2’%, Cp and 2YL,,q are obtained by multiplying both

. sides of equations (B17)”and (B18) by 2y. On the right side of these
equations this procedure is equivalent to rePlac@3 ~ by ~l,n>

I% @ ‘m+I,n> &e by Fm*l P2cj SJId &e by ~wl/#C. The

quantities are presented for completeness as follows:

#&%4’ +

{[2YL2,q = g ~ -%$20 Y 1[13@’021+ &Fo12 + k a,q’zl -
+ /3%

~,, - a4&40 - #3f%31 + ~4f%22 + ~5f%41 +
I

t

(B20)

—-
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For the condition of the sonic leading edge the quantities 2y~,q are

obtained from equations (B20) by tio~ping all the terms that include a
multiplier & and replacing aif by Tif in the re~i~ te~.

For calculation of 2yL1,q and 2YL2,P the fo~lo~ng integrds~

not included in equations (B12), (B15), nor in references 2 and 5, are
needed:

HW1.

H141.

H012=

1’1022.

%32 =

[
~2c@3c%2h+ C2(kU+ 54)E42+~F 1-—

6C 06 45

1
(8L12+ 11.6LT+183)E60

l_~@l-L
[

P2G 4.E
&2 5p2c3 ’05

2 - ~ ~ 24 + C2(4~ + 30)E42 +

(802 + 68u + 63)E60] ,

4j34C~2~10 =&F022 - 16~4C@y4cosh-1 ~

“0. $F0324~4@y%02 - $~4C2~E~o

4#C2y~30

=.~F 2.-

[
1 fJ4C@C2E41”+ 64(3u+ 5)Y6

4C 04 r 3
cosh-l ~

J

If the section quantities of equations (Bl )
the quantities &e zcan be obtained from ~

and (B21) herein and in reference 5 by use of the

> (B21)

and (B18) are desired,
given in equations (B12)

relations

(B22)

.

.
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Thus, for example, 45E O in the first of equations (B18) can be deduced.

from %5 1 in equation (B21) to be

●

[
~F 0 -~#E14+ C2(4U+ 54)E32+ (8u2+ 116a+ 183)E50 (B23)%50=&% 1

Total Coefficients

The total lift force is obtainedby substitution of equation (B3)
(or equation (B6) for the sonic leading edge) into equation (17). Total
pitching moment is obtained by substitution of equation (B4) (or equa-
tion (B7) for sonic leading edges) into equation (18). Root bending
moment is obtained by substituting equation (B1O) into equation (19).
Total rolling mauent is obtained by substituting equation (B20) into
equation (20).

In order to obtain the spanwise integrals of ~, F_ej ~,

~e, Jw) ~, I&e, and &e, it is convenient first to reduce ~,

%’, ~, and B&e in terms of ~, F_e, Jw, cosh-l~, and I&e.

This reduction is obtained by use of equations (A23) and (A24) of refer-.
ence 5 and by means of the appropriate equations in the present appendix.

. Formulas for obtaining the spanwise integrals & and ~me are
t

given in the appendix of reference 5.
(
Equation (A14) of reference 5 has

~een c-orrectedin an errata. The expression multiplying the quantity

H‘2,n’K2,~“
should be

)(n+l)~+ CD)” ‘e ‘nKwals
F-e are obtained

from l?me merely by changing the sign from plus to minus on the second

ma~or term (the term which involves the double-primed quantities) in
equations (A17) of reference 5.

The only other integral needed is

JYt
~w= 2R.P.

m“ -

@+nym(l + Dy)%nh-1 1 + ‘D (B24)
o

where R.P. means the real part of the succeeding quantity. By means
of integration by parts
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where 14,m is the 14,n of equation (A19) in reference 5. If the

e~ression (l+ Dy)n of equation (B24) is expanded, ~m can be -

obtained in terms of ~mo or 14,m. The needed recursion formulas are

then

T.2 = 4~mO+ 4m~l,0+ ‘%m+2j0

For the special case of the delta PIX form (~

lift and pitching-moment coefficients due to flapping

(B26)

J

= o), the total

and the total
rolling-momentcoefficients due to roll reduce to concise forms, as
follows:

Z2f =

‘6C2 (64M6+ 24CM4+ 12~2+ 5)k6
113,4mp15

2C2 1 M2c2 ~+. M*(4M2 + 3)k3 -—-- —
3P k 5P5 126p9

M6C2 (w4 + 2CIVS2+5)U
3240j313

(B27)

-..

●

.

.

—
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.
%,f =

●

iT2,f =

.

8c2 4M%2(4M2+ l)k2+ ~-(&M4+ 12M2+ l)k4 -—-—
15$3 M35j37 945pll

I

+ 24CM4 + 120M2 + 5)k6 - 2x&f
I

M%2 (6~6
62370@5

M4C2(4#+ 3)k3 -+—
72~9

2~2+5)k5 -%~2,f

1

M6c3 (64M6 + z4m4 + 12c142+ 5)k6

311850P15

(B28)

=3 1—- .-e
3j3 k 15p5

M6C3 (8#+

8100#3 I
(B29)

k+”*(-&M2+ 3)k3 -
252P9

20M2+ 5)k5

The first two terms in each of these total coefficients were obtained by
spanwise Integration of the section coefficients and also by the reverse.
flow theorem as a check. The remaining terms containing higher powers of
k were obtained by the reverse-flow theorem (using the velocity poten-
tial for two-dimensional supersonic flow given by eq. (23) of ref. 8)
and were used in obtaining figure ~.

From equations (B=) to (B29) the leading-edge sweep angle is seen
ta appear in such amanner that ~/C2, ~/C2, and (Rolli~~oment)/C3

are independent of the sweep angle of the leading edge for symmetrically
flapping and rolling delta wings with supersonic leading edges~ This
result corresponds to the finding in references 2 and 3 that”:P/C and
~/C are independent of A for the supersonic-leading-edgedelta-wing

oscillating in vertical translation end pitch. Such simple dependence
on A does not occur for the spanwise integrals of equation (19).
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The total coefficients of equations (B27) to (B29) are plotted in
figure 5 as a function of frequency for a Mach number of 1.6; a dis-
cussion of figure 5 is given In the section entitled “Accuracyas a
function of reduced frequency.”

.
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AwENmx c

NUMERICAL EXAMPLE OF A FLUTTER CALCULATION

Calculation by Present Method

A numerical example is now given of the method of flutter anslysis
outlined in the main texb. TIE configuration chosen (see fig. 6) is
that of a half.spsm sll.movable control surface of arrowhead plan fomn,
with A=45° and%= -15°, mounted on a shaft and with the wind-

tunnel well.presumed to act as a reflecting plane. The control-surface
pitch axis is located at ~ = 0.558 (4o.5 percent mean aerodynamic

chord). The location of first-mode and second-mode node lines are given
in terms of the nondimensional coordinates (xJy) and these node lines
are straight because all flexibility is considered to be concentrated
in the supporting shaft. The canponents of deflection, normalized to
a tip vertical deflection downward equal to the root chord 2b, are
as follows:

~ = 0 0600 %
2b “

—= 0.232
2b

el = loon 02 = -6.02

1

(cl)

f~ = 0.855 f2 = 2.77
I

The integrals over
me as follows:

J

the half-spau model of the necessary mass properties

s’mdy= 0.00253 Slug

J’~ dy = 0.0000232 slug-ft

J% dy = 0.000232 slug-ft
?

$ Ia W = o.00002q slug-ft*

! If dy = 0.000Q433 Slug-ftz

J p~ w = 0.00000855 Slug-ftz

(C2)
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Insertion of these quantities in equation (.21)gives the generalized
mass terms

.

Al = 0.0000880 slug-ft2 1 ●

A2 = o. cm.olk slug-ft*
J

and with b = 0.2375 and p = 0.00c66,

al = 12.04

a2 = 2%.4

For a Mach number of 1..6 values for the e.erodynemichalf-span
integr~s of equation (26) are as fo~ows:

rl = 0.10695 - o.~813k2+ i(O.mlw& 0.12790k)

r2 = 0.041546 - 0.033206k2+ i(O.093984&- 0.@0931k)

‘3 = 0.30190 ~ -
(

o.~4464 + i -0.07825 ~+ o.L6227k)k2

r4 . 0.093984 J=k2 - 0.053708 + i(-o. 03U56 ~ + o. o~1461k)

r5 =o.0488g6 - 0.035692k2+ i(O.16435 ~- o.046g46k)

r6 = 0.016912 - o.oo45837k2+ i(o.064g8Q ~ - 0.013625k)

‘7
=o.o~884 - (0.0470&k2+ i 0.0L525~ - O.oh(lmk)

r8 = 0.0u25 * - 0.029437 + i(O.Ci##@ ~ + 0.052@

‘9
= 0.01&556 -

(
0.02x79k2+ i o.02824~ - 0.0186~k)

(C3)

.

(C4)

.

.
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The aerodynamic integrsls.
modes are specified by equation

.

45

& of equation (25) for the coupled

(Cl) are then

1

c= = ( ).o.~~1 ~+ 0.095154 + i -0.14u8 ~ - 0. U843k
k2

C12 = 1.2839 ~ -
(

1.03499 + i -o.66961~ +1.18=~2 )

Ca = -0.60934 ~
( ) ‘+ o.~5620 + i o.23h9 ~- 0.053134k~2

(C5)

c= = 3.4259~-
( )1.2857+ i -3.9816 ~+o.2Xg8k .

k2

J

The values of ~ and & listed above are applied in the flutter
determinant (eq. (28)), and the determinant is solved over a range of
values of k for the two real unknowns ~/m and u#D. Of course,

gl and g2 can be varied independently,but in the present exsmple the

. simplification gl = g2 = g is msiie. The flutter results, shown in

figure 7 as functions of the frequency ratio ~/~ for two values of

* the structural dsmping coefficient g, are discussed in the body of the
report in the section entitled “Discussion.t’

Effects of Using an Aerodynamic Strip Theory

for Flapping Motion

In the discussion of figure 4 in the main text, the differences in
the section lift and moment coefficients as obtained from the expressions
of the present analysis and as obtained alternatively by a “finite-wing
strip theory” were canpared and found to range frcm moderate to appre-
ciable. In order to determine what effect the use of such strip-theory
coefficients has on the present flutter example, substitutions can be
made in eqmtion (26) as fonows:

In r
5

andr: 6

I 1(
) for (Use 2 y L1 + iL2 %& + iL2,f) (c6a)
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lnr:- 9

I I(Use 2y M1+iM2
)for( )%,f + ~2,f

As a result of these substitutions,

r5
( )1

= 0.083092+ i o.18797~- o.081862k

r6 . (0.039631 + i 0.082=3 ~- - 0 .03586n)

}

NACA TN 418g

(c6b)

(C7)

r9
(

‘1

= o.o18gkg + i 0.028100 ~ - o.025442k
k

The other l?i vslues are as listed in equation (C4). A brief discus-

sion of the effect of using an aerodynamic strip theory to account for
flapping motion in the present example is also included in the section
entitle& ’’Discussion”in the main text.

.

.
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v

IY,Y’,q

.

(a) Projection of plem form on xy-plane.
c = cot A; D = tan &.

z’

~=+- X = l+Dy

o
x,x’, ~

(?J) Vertical.displacement of section y.

Figure l.- Sketch illustrating srrowhesd plan fomn, coordinate system,
and displacement of section.

.
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(a) E$mmetric flapping wing.

4 ,

P

(b) Rolling wing.

Figure 2.-.Verticsl displacement ~ of wing sections.
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(a) Plan forruin ~-plane.

IV,vo

(b) Plan form transformed in uv-plane. (See eq. (Al).)

Figure 3.- Plsm fomns in ~-pl- md
regions I, 11, and III defined by

in trazmformed uv-plsne, showing
leading edge snd Mach lines.
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(a) E&ctionlift coefflcien~sfor synmstric (b)“&ction pitching-mment cos~ficientfifor
flappingmode. synmetr~cflappingmode.

Ffgure 4.- SpauWl,seMstribution or Eecixl.on lift and pitcklng-mcaentcoefflctentsfor symmetric
flapp~ mode and of lti coefficientsfor rollingmcde for a 45° deltawl~ (C = 1, D = O)
with ~ =0. ~, M=l.6, and k. O.5. Shown is the effect of using one and two terms of

the frequencye~ansion for the flapping and rollingwing ami cd using two frequencyterms
frcm a fitite-wingstriptheory. Ur

P
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(C) Section lift coefficients for rolling mode.

Figure 4.- Concluded.

.
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(a)

Figure 5.-

.32
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o A ,8 LZ L2_zo M m Sz
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a2

Totsl lift coefficients for symmetric flapping mode.

Tot&l.lift and pitching-mcment coefficients for symmetric
flapping mode and ro~ing-mcment coefficients for rolJing mode for
supersonic- and sonic-e@ge delta wings for M =1.6 and ~ =0..5

as a function of the reduced-freqpency parsmeter fi and the
reduced frequency k. Shown is the effect of using 1, 2, 3,,and
4 terms of the power-series expansion for each coefficient. The
highest power of k contained in each curve is indicated.
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Figure 7.- Flutter boundaries in
~/V and ~/V as functions of the natural-mode frequency
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smd u/~ at M = 1.6 for the configuration sho-wnin figure 6
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NACA TN 4189

d
Q

— c)
.-

/ .03

1.8
. .

\
—-.

1.6

1

I .4

1.2

w
~

I.0

w— ! /! \\

I-Jii!!“1111111 .YIIH+

\

\
w \

.8 I /7 \

,

.6

I
%

.4

.2

o .2 .4 .6 .8 Lo [.2

WI /w2

(c) Frequency ratios o ~ and
/

Figure 7.- Concluded.

.

NACA - Lm@eyFleM, W.


